Ewald Summation Approach to Potential Models of Aqueous Electrolytes Involving Gaussian Charges and Induced Dipoles: Formal and Simulation Results
Author(s) -
Ariel A. Chialvo,
Lukáš Vlček
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp509074p
Subject(s) - ewald summation , dipole , electrostatics , gaussian , statistical physics , water model , molecular dynamics , virial coefficient , ionic bonding , physics , electric potential energy , thermodynamics , chemistry , quantum mechanics , ion , power (physics)
We present a detailed derivation of the complete set of expressions required for the implementation of an Ewald summation approach to handle the long-range electrostatic interactions of polar and ionic model systems involving Gaussian charges and induced dipole moments with a particular application to the isobaric-isothermal molecular dynamics (NPT-MD) simulation of our Gaussian charge polarizable (GCP) water model and its extension to aqueous electrolyte solutions. The set is comprised of the individual components of the potential energy, electrostatic potential, electrostatic field and gradient, electrostatic force, and corresponding virial. Moreover, we show how the derived expressions converge to known point-based electrostatic counterparts when the parameters, defining the Gaussian charge and induced dipole distributions, are extrapolated to their limiting point values. Finally, we test the simulation outcomes from the Ewald implementation against the corresponding reaction-field (RF) approach at three contrasting hydrogen-bonded water environments, including thermodynamic quantities, polarization behavior, and microstructural properties, where the simulated microstructures are compared with the available neutron scattering and X-ray diffraction data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom