z-logo
open-access-imgOpen Access
Physical Nature of Intermolecular Interactions in [BMIM][PF6] Ionic Liquid
Author(s) -
Borys Szefczyk,
W. Andrzej Sokalski
Publication year - 2014
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp411363d
Subject(s) - ionic liquid , intermolecular force , chemical physics , interaction energy , delocalized electron , ionic bonding , intermolecular interaction , electrostatics , molecular dynamics , chemistry , electron , ion , materials science , thermodynamics , computational chemistry , physics , molecule , organic chemistry , quantum mechanics , catalysis
The intermolecular interaction energy in a popular ionic liquid, [BMIM][PF6] is analyzed using the Hybrid Variation-Perturbation Theory approach. The analysis is performed on a sample of configurations from molecular dynamics simulation, instead of minimized structures. The interaction energy components are quantified, showing that the electrostatics is the dominating but not the only important term. It is found that two- and three-body electron delocalization components also contribute to the stabilization of the complexes; however, these interactions vanish beyond the first coordination sphere. The presented study shows a systematic way to obtain the amount of physically meaningful components of the interaction energy, which possibly could be related to macroscopic properties of ionic liquids (e.g., viscosity, melting point) or electron transfer in ionic liquids.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom