
Development of Hybrid Silver-Coated Gold Nanostars for Nonaggregated Surface-Enhanced Raman Scattering
Author(s) -
Andrew M. Fales,
Hsiangkuo Yuan,
Tuan VoDinh
Publication year - 2014
Publication title -
journal of physical chemistry. c./journal of physical chemistry. c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/jp4091393
Subject(s) - nanoprobe , raman scattering , surface plasmon resonance , nanotechnology , nanoparticle , bimetallic strip , colloidal gold , plasmon , chemistry , raman spectroscopy , materials science , biosensor , optoelectronics , metal , optics , physics , organic chemistry
In the ongoing search for ever-brighter surface-enhanced Raman scattering (SERS) nanoprobes, gold nanostars (AuNSs) have emerged as one of the best geometries for producing SERS in a nonaggregated state. Despite their high enhancement factor, optical extinction from plasmon-matched nanoparticles can greatly attenuate the overall SERS intensity. Herein, we report the development of a new hybrid bimetallic NS-based platform that exhibits superior resonant SERS (SERRS) properties. In this new nanoplatform, coating AuNSs with a subtotal layer of silver (AuNS@Ag) can further increase their SERRS brightness by an order of magnitude when being interrogated by an off-resonant excitation source. Silica-encapsulated AuNS@Ag nanoprobes were injected intradermally into a rat pelt, where SERRS was readily detected with higher signal-to-noise than nanoprobes prepared from AuNS. Moreover, these off-resonance AuNS@Ag nanoprobes did not cause any gross photothermal damage to tissue, which was observed with the plasmon-matched AuNSs. This novel SERRS-active hybrid nanoprobe exhibits high SERRS brightness and offers promising properties for future applications in sensing and molecular imaging.