z-logo
open-access-imgOpen Access
The Effect of Ionic Liquid Hydrophobicity and Solvent Miscibility on Pluronic Amphiphile Self-Assembly
Author(s) -
Suraj Chandra Sharma,
Rob Atkin,
Gregory G. Warr
Publication year - 2013
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp4086443
Subject(s) - miscibility , solvent , amphiphile , microemulsion , hexafluorophosphate , dynamic light scattering , ionic liquid , materials science , micelle , hydrophobe , copolymer , chemical engineering , polymer chemistry , lamellar structure , poloxamer , chemistry , organic chemistry , aqueous solution , polymer , nanotechnology , pulmonary surfactant , nanoparticle , composite material , engineering , catalysis
The phase behavior of the triblock copolymer, (EO)20(PO)70(EO)20 (P123), in the water-immiscible (hydrophobic) ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6), and tris(pentafluoroethyl)trifluorophosphate (bmimFAP), has been investigated, and its amphiphilic self-assembly examined using small-angle X-ray scattering. The results obtained are contrasted with those for P123 in water. Direct and water-swellable micellar, hexagonal, and lamellar phases of P123 are found in bmimPF6, which behaves like a polar solvent despite being water immiscible, but bmimFAP behaves as a truly hydrophobic solvent, forming only a lamellar phase over a narrow composition range. The miscibility of bmimPF6 and water is increased by P123 addition, and at sufficiently high P123 concentrations, a single lamellar phase forms in which bmimPF6 and water are miscible in all proportions. In contrast, the preferential solubilization of bmimPF6 by PEO chains and bmimFAP by PPO chains causes the nanosegregation of these miscible ILs in concentrated P123 solutions. This leads to the formation of a P123/bmimPF6/bmimFAP microemulsion where bmimPF6 is the polar solvent and bmimFAP is the non-polar solvent.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom