z-logo
open-access-imgOpen Access
Ab Initio Molecular Dynamics Simulations of the Liquid/Vapor Interface of Sulfuric Acid Solutions
Author(s) -
Audrey Dell Hammerich,
V. Buch
Publication year - 2012
Publication title -
the journal of physical chemistry a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 235
eISSN - 1520-5215
pISSN - 1089-5639
DOI - 10.1021/jp2126398
Subject(s) - hydronium , aqueous solution , ion , molecule , molecular dynamics , chemistry , sulfuric acid , ab initio , van der waals force , density functional theory , hydrogen bond , computational chemistry , inorganic chemistry , chemical physics , organic chemistry
Ab initio molecular dynamics simulations of the liquid-vapor interface are presented for thin slabs of 72 water molecules containing a single molecule of sulfuric acid. Trajectories in the 306-330 K range are calculated for two functionals with double- and triple-ζ quality basis sets. Comparisons are made between BLYP and HCTH/120 results for the slab simulations and for bulk simulations of one H(2)SO(4) in a periodic box with 63 waters. Good agreement is found with the available experimental data and the results of other relevant AIMD studies with respect to ionization of the acid, size of the coordination shells, partitioning of the ions with the hydronium exhibiting a surface preference and the anions in the interior, and the orientational distributions for the hydronium ions and for the surface/subsurface water molecules. The major differences in the performance of the two functionals are attributable to the greater basicity of the anion oxygen atoms with the HCTH functional and the more structured aqueous solution with BLYP. The enhanced basicity results in larger aqueous coordination shells for the anion oxygens. The structuring of the BLYP aqueous solution is observed in the corrugation of the water density profile, the higher first peak in g(OO)(r), and a smaller water self-diffusion constant. This structuring with the BLYP functional yields anion hydrogen bonds that endure longer and where the dissociated ions more rapidly and directly segregate in the slab. The simulations indicate that aqueous surfaces containing ionizable diprotic acids can be modeled with rather modest sized systems and be informative.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom