z-logo
open-access-imgOpen Access
Theoretical Study of Possible Active Site Structures in Cobalt- Polypyrrole Catalysts for Oxygen Reduction Reaction
Author(s) -
Zheng Shi,
Hansan Liu,
Kunchan Lee,
Eben Sy Dy,
Jerzy Chlistunoff,
Michael Blair,
Piotr Zelenay,
Jiujun Zhang,
Zhongsheng Liu
Publication year - 2011
Publication title -
the journal of physical chemistry c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/jp2027719
Subject(s) - catalysis , chemistry , active site , cobalt , electrochemistry , adsorption , oxygen , redox , polypyrrole , extended x ray absorption fine structure , density functional theory , inorganic chemistry , electrode , computational chemistry , absorption spectroscopy , organic chemistry , physics , quantum mechanics
The active site structure of nonprecious group metal catalyst is a puzzle which inhibits innovative synthetic route design and impedes breakthroughs. In an effort to understand the origin of the catalytic activity of Co-PPy composites, we employed density functional theory (DFT) and experimental measurements to investigate the structure and energy of possible catalytic sites and the corresponding reaction pathways for the oxygen reduction reaction (ORR). Four different structures of the active site are examined, including two previously postulated in the literature. In order to determine the probability of their existence, the stability of each structure is evaluated. The corresponding Co(III)/Co(II) redox potentials are calculated and, based on the obtained data, the involvement of either Co(III) or Co(II) in the ORR under fuel cell-relevant conditions postulated. Possible configurations of oxygen adsorption on the active centers are also examined, including the end-on and side-on cases. The possible reaction pathways and reaction products generated at the various active centers are evaluated based on Yeager0s concept correlating ORR products with the configuration of oxygen adsorption. The catalytic activity is found to be significantly different for the various sites and depends strongly on the electrode potential. The computational data are critically compared with experimental spectroscopic (EXAFS and FTIR) and electrochemical data (CV, RDE, and RRDE). The insights into the active structures and their associated catalytic activity as well as selectivity for four-electron oxygen reduction are expected to provide guidance for further catalyst optimization.Peer reviewed: YesNRC publication: Ye

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom