Oxygen Reduction Reaction Activity and Electrochemical Stability of Thin-Film Bilayer Systems of Platinum on Niobium Oxide
Author(s) -
Li Zhang,
LiYa Wang,
Chris Holt,
Titichai Navessin,
Kourosh Malek,
Michael Eikerling,
David Mitlin
Publication year - 2010
Publication title -
the journal of physical chemistry c
Language(s) - French
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/jp104306j
Subject(s) - electrochemistry , platinum , niobium oxide , cyclic voltammetry , bilayer , niobium , electrocatalyst , oxide , natural bond orbital , inorganic chemistry , materials science , density functional theory , chemistry , electrode , catalysis , computational chemistry , membrane , organic chemistry , metallurgy , biochemistry
We used electrochemical testing and theoretical calculations based on density functional theory (DFT) to examine the oxygen reduction reaction (ORR) activity of platinum electrocatalyst supported on several forms of niobium oxide. Bilayer electrocatalysts were synthesized in the form of 5 nm thick Pt layers (ca. 0.01 mg/cm2), deposited on 5 or 10 nm thick niobium oxide and backed by glassy carbon (GC) electrodes. The NbO and NbO2 supports enhance the specific electrochemical activity of Pt relative to the identically synthesized baseline system of Pt on GC but have no positive effect on the mass activity. The electrochemical stability of the Pt/NbO2 bilayer system was investigated by potential cycling with up to 2500 cyclic voltammetry (CV) cycles. After 2500 cycles, data indicates minimal electrochemical area loss. With the use of DFT calculations, we have evaluated effects of oxygen incorporation on stability, electronic structure, and electrochemical activity of Pt|NbxOy systems. Calculations predict a transfer of electronic charge density from Nb, NbO, and NbO2 to Pt and a reverse case for Nb2O5. However, the experimental ORR activity does not follow the trends predicted by the d-band model.\uc0 l\u2019aide de tests \ue9lectrochimiques et de calculs th\ue9oriques bas\ue9s sur la th\ue9orie fonctionnelle de la densit\ue9 (TFD), nous avons examin\ue9 l'activit\ue9 de r\ue9action de r\ue9duction d'oxyg\ue8ne (RRO) d\u2019un \ue9lectrocatalyseur \ue0 base de platine support\ue9 par diverses formes d'oxyde de niobium. Des bicouches d\u2019\ue9lectrocatalyseurs ont \ue9t\ue9 synth\ue9tis\ue9es \ue0 partir de couches de 5 nm d'\ue9paisseur de Pt (environ 0,01 mg/cm2), d\ue9pos\ue9es sur 5 ou 10 nm d'oxyde de niobium et support\ue9es par des \ue9lectrodes de carbone vitreux (GC). Les supports de BNP et de NbO2 contribuent \ue0 am\ue9liorer l'activit\ue9 \ue9lectrochimique sp\ue9cifique de Pt par rapport au syst\ue8me de base Pt sur GC synth\ue9tis\ue9 de mani\ue8re identique, mais n'ont aucun effet positif sur l'activit\ue9 de masse. La stabilit\ue9 \ue9lectrochimique de la bicouche Pt/NbO2 a \ue9t\ue9 examin\ue9e en mesurant le potentiel cyclique jusqu\u2019\ue0 2500 cycles de voltamp\ue9rom\ue9trie cyclique (CV). Les donn\ue9es indiquent une perte minimale de surface \ue9lectrochimique au-del\ue0 de 2500 cycles. En faisant appel \ue0 des calculs bas\ue9s sur la th\ue9orie de la fonctionnelle de la densit\ue9 (DFT), nous avons \ue9valu\ue9 les effets de l'incorporation d'oxyg\ue8ne sur la stabilit\ue9, la structure \ue9lectronique, et l'activit\ue9 \ue9lectrochimique des syst\ue8mes Pt | NbxOy. Selon les calculs, la densit\ue9 de charge \ue9lectronique est transf\ue9r\ue9e du Nb, NbO, et NbO2 vers le Pt et \ue0 l\u2019inverse dans le cas du Nb2O5. Toutefois, la mesure exp\ue9rimentale de l'activit\ue9 de RRO ne cadre pas avec les tendances pr\ue9vues par le mod\ue8le de la bande d.Peer reviewed: YesNRC publication: Ye
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom