z-logo
open-access-imgOpen Access
Electronic Conductivity and Stability of Doped Titania (Ti1−XMXO2, M = Nb, Ru, and Ta)—A Density Functional Theory-Based Comparison
Author(s) -
Eben Sy Dy,
Rob Hui,
Jiujun Zhang,
Zhongsheng Liu,
Zheng Shi
Publication year - 2010
Publication title -
the journal of physical chemistry c
Language(s) - French
Resource type - Journals
SCImago Journal Rank - 1.401
H-Index - 289
eISSN - 1932-7455
pISSN - 1932-7447
DOI - 10.1021/jp100826g
Subject(s) - doping , dopant , materials science , fermi level , rutile , electrical resistivity and conductivity , conductivity , density functional theory , condensed matter physics , band gap , anatase , density of states , analytical chemistry (journal) , electron , chemistry , computational chemistry , physics , optoelectronics , organic chemistry , biochemistry , quantum mechanics , photocatalysis , chromatography , catalysis
The structure, electrical conductivity, and stability of Nb-, Ru-, and Ta-doped titania were compared by density functional theory. Both anatase and rutile structures were investigated. Doping causes lattice expansion in all cases. The mechanism by which Ru-doping induces electrical conductivity in titania differs from those by Ta- and Nb-doping. Ru-doping fills the titania band gap primarily with its own d-electrons. On the other hand, Ta- and Nb-doping shift the Fermi level to the originally unfilled conduction states. Substitution free energy calculations indicate that a uniform Ti\u2080.\u2087\u2085M\u2080.\u2082\u2085O\u2082 solution is favorable for Nb- and Ta-doping but unfavorable for Ru-doping. In addition, we also considered the effect of dopant concentration on the electrical conductivity of doped titania in the rutile phase. For Nb- and Ta-doping, increasing dopant concentration above mole fractions of 0.0625 and 0.125, respectively, gives diminished increment in Fermi level electron density. On the other hand, electron density at the Fermi level of Ru-doped rutile is more linearly dependent on Ru mole fraction.La structure, la conductivit\ue9 \ue9lectrique et la stabilit\ue9 du dioxyde de titane dop\ue9 au Nb, au Ru et au Ta ont \ue9t\ue9 compar\ue9es par la th\ue9orie de la fonctionnelle de la densit\ue9. On a \ue9tudi\ue9 les structures de l\u2019anatase et du rutile. Le dopage provoque une expansion du r\ue9seau mol\ue9culaire dans tous les cas. Le m\ue9canisme par lequel le dopage au Ru induit une conductivit\ue9 \ue9lectrique au dioxyde de titane est diff\ue9rent de ceux observ\ue9s pour le dopage au Ta et au Nb. Le dopage au Ru remplit la largeur de bande interdite du dioxyde de titane principalement avec ses propres \ue9lectrons-d. Par ailleurs, le dopage au Ta et au Nb d\ue9place le niveau de Fermi aux \ue9tats de conduction vides \ue0 l\u2019origine. Les calculs d\u2019\ue9nergie libre de substitution indiquent qu\u2019une solution uniforme de Ti0,75M0,25O2 est favorable au dopage au Nb et au Ta, mais d\ue9favorable au dopage au Ru. De plus, nous avons \ue9galement consid\ue9r\ue9 l\u2019effet de la concentration dopante sur la conductivit\ue9 \ue9lectrique du dioxyde de titane dop\ue9 dans la phase du rutile. Dans les cas du dopage au Nb et au Ta, l\u2019augmentation de la concentration dopante au-del\ue0 des fractions molaires de 0,0625 et de 0,125, respectivement, donne une progression diminu\ue9e de la densit\ue9 \ue9lectronique au niveau de Fermi. Par ailleurs, la densit\ue9 \ue9lectronique au niveau de Fermi du rutile dop\ue9 au Ru est plus lin\ue9airement d\ue9pendante de la fraction molaire du Ru.Peer reviewed: YesNRC publication: Ye

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom