Studies of the Thermodynamic Properties of Hydrogen Gas in Bulk Water
Author(s) -
Dubravko Sabo,
Sameer Varma,
Marcus G. Martin,
Susan B. Rempe
Publication year - 2007
Publication title -
the journal of physical chemistry b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.864
H-Index - 392
eISSN - 1520-6106
pISSN - 1520-5207
DOI - 10.1021/jp075459v
Subject(s) - monte carlo method , anharmonicity , thermodynamics , intermolecular force , hydrogen , work (physics) , molecular dynamics , aqueous solution , hydrogen bond , chemistry , solvent , thermodynamic integration , molecule , chemical physics , materials science , statistical physics , computational chemistry , physics , organic chemistry , statistics , mathematics , quantum mechanics
The thermodynamic properties of hydrogen gas in liquid water are investigated using Monte Carlo molecular simulation and the quasichemical theory of liquids. The free energy of hydrogen hydration obtained by Monte Carlo simulations agrees well with the experimental result, indicating that the classical force fields used in this work provide an adequate description of intermolecular interactions in the aqueous hydrogen system. Two estimates of the hydration free energy for hydrogen made within the framework of the quasichemical theory also agree reasonably well with experiment provided local anharmonic motions and distant interactions with explicit solvent are treated. Both quasichemical estimates indicate that the hydration free energy results from a balance between chemical association and molecular packing. Additionally, the results suggest that the molecular packing term is almost equally driven by unfavorable enthalpic and entropic components.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom