Neutral Anion Receptors: Synthesis and Evaluation as Sensing Molecules in Chemically Modified Field Effect Transistors
Author(s) -
Martijn M. G. Antonisse,
Bianca H. M. SnellinkRuël,
Isteyfo Yigit,
Johan F. J. Engbersen,
David N. Reinhoudt
Publication year - 1997
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/jo9707040
Subject(s) - chemistry , selectivity , fluoride , hydrogen bond , phosphate , hofmeister series , inorganic chemistry , ion , molecule , salt (chemistry) , combinatorial chemistry , organic chemistry , catalysis
new class of anion selective receptors is based on the neutral uranylsalophene building block as Lewis acidic binding site. Additional hydrogen bond accepting or donating moieties near the anion binding site offer the possibility of varying the binding selectivity. Field effect transistors chemically modified with such receptors exhibit anion selectivities that strongly deviate from the classical Hofmeister series favoring phosphate or fluoride anions, depending on the structure of the uranylsalophenes. The phosphate selective chemically modified field effect transistors (CHEMFETs) detect phosphate with high selectivity over much more lipophilic anions, such as nitrate (log = −1.3), at [H2PO4-] ≥ 6.3 × 10-4 M. CHEMFETs modified with salophenes with amido substituents result in a high fluoride selectivity; even in the presence of 0.1 M chloride, fluoride can be detected at [F-] ≥ 6 × 10-4 M (log = −2.0)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom