z-logo
open-access-imgOpen Access
Synthesis of Enantiopure 10-Nornaltrexones in the Search for Toll-like Receptor 4 Antagonists and Opioid Ligands
Author(s) -
Brandon R. Selfridge,
Jeffrey R. Deschamps,
Arthur E. Jacobson,
Kenner C. Rice
Publication year - 2014
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/jo500568s
Subject(s) - enantiopure drug , enantiomer , chemistry , stereochemistry , opioid , enantioselective synthesis , receptor , organic chemistry , catalysis , biochemistry
10-Nornaltrexones (3-(cyclopropylmethyl)-4a,9-dihydroxy-2,3,4,4a,5,6-hexahydro-1H-benzofuro[3,2-e]isoquinolin-7(7aH)-one, 1) have been underexploited in the search for better opioid ligands, and their enantiomers have been unexplored. The synthesis of trans-isoquinolinone 2 (4-aH, 9-O-trans-9-methoxy-3-methyl-2,3,4,4a,5,6-hexahydro-1H-benzofuro[3,2-e]isoquinolin-7(7aH)-one) was achieved through a nonchromatographic optimized synthesis of the intermediate pyridinyl compound 12. Optical resolution was carried out on 2, and each of the enantiomers were used in efficient syntheses of the "unnatural" 4aR,7aS,12bR-(+)-1) and its "natural" enantiomer (-)-1. Addition of a 14-hydroxy (the 4a-hydroxy) group in the enantiomeric isoquinolinones, (+)- and (-)-2), gave (+)- and (-)-10-nornaltrexones. A structurally unique tetracyclic enamine, (12bR)-7,9-dimethoxy-3-methyl-1,2,3,7-tetrahydro-7,12b-methanobenzo[2,3]oxocino[5,4-c]pyridine, was found as a byproduct in the syntheses and offers a different opioid-like skeleton for future study.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom