
Computational Replication of the Abnormal Secondary Kinetic Isotope Effects in a Hydride Transfer Reaction in Solution with a Motion Assisted H-Tunneling Model
Author(s) -
Sadra Kashefolgheta,
Mortezaali Razzaghi,
Blake A. Hammann,
James E. Eilers,
Daniel Roston,
Yun Lü
Publication year - 2014
Publication title -
journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/jo402650a
Subject(s) - kinetic isotope effect , chemistry , deuterium , hydride , carbocation , computational chemistry , isotope , steric effects , kinetic energy , transition state , photochemistry , chemical physics , hydrogen , stereochemistry , atomic physics , organic chemistry , catalysis , physics , nuclear physics , quantum mechanics
We recently reported abnormal secondary deuterium kinetic isotope effects (2° KIEs) for hydride transfer reactions from alcohols to carbocations in acetonitrile (Chem. Comm. 2012, 48, 11337). Experimental 2° KIE values were found to be inflated on the 9-C position in the xanthylium cation but deflated on the β-C position in 2-propanol with respect to the values predicted by the semi-classical transition-state theory. No primary (1°) isotope effect on 2° KIEs was observed. Herein, the KIEs were replicated by the Marcus-like H-tunneling model that requires a longer donor-acceptor distance (DAD) in a lighter isotope transfer process. The 2° KIEs for a range of potential tunneling-ready-states (TRSs) of different DADs were calculated and fitted to the experiments to find the TRS structure. The observed no effect of 1° isotope on 2° KIEs is explained in terms of the less sterically hindered TRS structure so that the change in DAD due to the change in 1° isotope does not significantly affect the reorganization of the 2° isotope and hence the 2° KIE. The effect of 1° isotope on 2° KIEs may be expected to be more pronounced and thus observable in reactions occurring in restrictive environments such as the crowded and relatively rigid active site of enzymes.