Radical O→C Transposition: A Metal-Free Process for Conversion of Phenols into Benzoates and Benzamides
Author(s) -
Abdulkader Baroudi,
Jeremiah Alicea,
Phillip Flack,
Jason Kirincich,
Igor V. Alabugin
Publication year - 2011
Publication title -
the journal of organic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.2
H-Index - 228
eISSN - 1520-6904
pISSN - 0022-3263
DOI - 10.1021/jo102467j
Subject(s) - chemistry , benzoates , transposition (logic) , phenols , metal , process (computing) , organic chemistry , philosophy , linguistics , computer science , operating system
We report a metal-free procedure for transformation of phenols into esters and amides of benzoic acids via a new radical cascade. Diaryl thiocarbonates and thiocarbamates, available in a single high-yielding step from phenols, selectively add silyl radicals at the sulfur atom of the C═S moiety. This addition step, analogous to the first step of the Barton-McCombie reaction, produces a carbon radical which undergoes 1,2 O→C transposition through an O-neophyl rearrangement. The usually unfavorable equilibrium in the reversible rearrangement step is shifted forward via a highly exothermic C-S bond scission in the O-centered radical, which furnishes the final benzoic ester or benzamide product. The metal-free preparation of benzoic acid derivatives from phenols provides a potentially useful alternative to metal-catalyzed carbonylation of aryl triflates.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom