z-logo
open-access-imgOpen Access
Discovery of 8-Cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x) as a Potent Inhibitor of Cyclin-Dependent Kinase 4 (CDK4) and AMPK-Related Kinase 5 (ARK5)
Author(s) -
M. V. Ramana Reddy,
Balireddy Akula,
Stephen C. Cosenza,
Sai Krishna Athaluri Divakar,
Muralidhar R. Mallireddigari,
Venkat R. Pallela,
Vinay K. Billa,
D. R. C. Venkata Subbaiah,
E. Vijaya Bharathi,
Rodrigo VasquezDel Carpio,
Amol Padgaonkar,
Stacey J. Baker,
E. Premkumar Reddy
Publication year - 2014
Publication title -
journal of medicinal chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.01
H-Index - 261
eISSN - 1520-4804
pISSN - 0022-2623
DOI - 10.1021/jm401073p
Subject(s) - chemistry , kinase , pharmacology , chronic myelogenous leukemia , in vivo , cytotoxicity , in vitro , imatinib , pyrimidine , structure–activity relationship , stereochemistry , leukemia , cancer research , biochemistry , medicine , biology , microbiology and biotechnology , myeloid leukemia
The success of imatinib, a BCR-ABL inhibitor for the treatment of chronic myelogenous leukemia, has created a great impetus for the development of additional kinase inhibitors as therapeutic agents. However, the complexity of cancer has led to recent interest in polypharmacological approaches for developing multikinase inhibitors with low toxicity profiles. With this goal in mind, we analyzed more than 150 novel cyano pyridopyrimidine compounds and identified structure-activity relationship trends that can be exploited in the design of potent kinase inhibitors. One compound, 8-cyclopentyl-2-[4-(4-methyl-piperazin-1-yl)-phenylamino]-7-oxo-7,8-dihydro-pyrido[2,3-d]pyrimidine-6-carbonitrile (7x), was found to be the most active, inducing apoptosis of tumor cells at a concentration of approximately 30-100 nM. In vitro kinase profiling revealed that 7x is a multikinase inhibitor with potent inhibitory activity against the CDK4/CYCLIN D1 and ARK5 kinases. Here, we report the synthesis, structure-activity relationship, kinase inhibitory profile, in vitro cytotoxicity, and in vivo tumor regression studies by this lead compound.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom