z-logo
open-access-imgOpen Access
Methods for Cryosectioning and Mass Spectrometry Imaging of Whole-Body Zebrafish
Author(s) -
Whitney L. Stutts,
Megan M. Knuth,
Måns Ekelöf,
Debabrata Mahapatra,
Seth W. Kullman,
David C. Muddiman
Publication year - 2020
Publication title -
journal of the american society for mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.961
H-Index - 127
eISSN - 1879-1123
pISSN - 1044-0305
DOI - 10.1021/jasms.9b00097
Subject(s) - chemistry , mass spectrometry , mass spectrometry imaging , zebrafish , chromatography , biochemistry , gene
The zebrafish ( Danio rerio ) is an ideal model for whole animal studies of lipid metabolism and lipid-related disease. In this work, infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) mass spectrometry imaging (MSI) was applied for direct visualization of lipid and metabolite distributions across various organs in whole-body zebrafish tissue sections. Detailed methods for overcoming the challenges of cryosectioning adult male zebrafish for MSI and complementary histological imaging are described. Representative two-dimensional ion maps demonstrated organ specific localization of lipid analytes allowing for visualization of areas of interest including the brain, liver, intestines, and skeletal muscle. A high resolving power mass spectrometer was utilized for accurate mass measurements, which permitted the use of open-source, web-based tools for MS 1 annotations including METASPACE and METLIN. Whole-body MSI with IR-MALDESI allowed for broad lipid coverage with high spatial resolution, illustrating the potential of this technique for studying lipid-related diseases using zebrafish as a model organism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom