z-logo
open-access-imgOpen Access
Simultaneous Evaluation of a Vaccine Component Microheterogeneity and Conformational Integrity Using Native Mass Spectrometry and Limited Charge Reduction
Author(s) -
Cedric E. Bobst,
Justin B. Sperry,
Olga Friese,
Igor A. Kaltashov
Publication year - 2021
Publication title -
journal of the american society for mass spectrometry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.961
H-Index - 127
eISSN - 1879-1123
pISSN - 1044-0305
DOI - 10.1021/jasms.1c00091
Subject(s) - chemistry , electrospray ionization , mass spectrometry , tandem mass spectrometry , analytical chemistry (journal) , chromatography , chemical physics
Analytical characterization of extensively modified proteins (such as haptenated carrier proteins in synthetic vaccines) remains a challenging task due to the high degree of structural heterogeneity. Native mass spectrometry (MS) combined with limited charge reduction allows these obstacles to be overcome and enables meaningful characterization of a heavily haptenated carrier protein CRM197 (inactivated diphtheria toxin conjugated with nicotine), a major component of a smoking cessation vaccine. The extensive conjugation results in a near-continuum distribution of ionic signal in electrospray ionization (ESI) mass spectra of haptenated CRM197 even after size-exclusion chromatographic fractionation. However, supplementing the ESI MS measurements with limited charge reduction of ionic populations selected within narrow m / z windows gives rise to well-resolved charge ladders, from which both masses and charge states of the ionic species can be readily deduced. Application of this technique to a research-grade material of CRM197/H7 conjugate not only reveals its marginal conformational stability (manifested by the appearance of high charge-density ions in ESI MS) but also establishes a role of the extent of haptenation as a major factor driving the loss of the higher order structure integrity. The unique information provided by native MS used in combination with limited charge reduction provides a strong argument for this technique to become a standard/required tool in the analytical arsenal in the field of biotechnology and biopharmaceutical analysis, where protein conjugates are becoming increasingly common.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here