
General Base Swap Preserves Activity and Expands Substrate Tolerance in Hedgehog Autoprocessing
Author(s) -
Jing Hua Zhao,
Daniel A. Ciulla,
Jierui Xie,
Andrew G. Wagner,
Drew A Castillo,
Allison S. Zwarycz,
Zhongqian Lin,
Seth Beadle,
JoséLuis Giner,
Zhong Li,
Hongmin Li,
Nilesh K. Banavali,
Brian P. Callahan,
Chunyu Wang
Publication year - 2019
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.9b08914
Subject(s) - chemistry , stereochemistry , active site , protein engineering , ligand (biochemistry) , enzyme , biochemistry , receptor
Hedgehog (Hh) autoprocessing converts Hh precursor protein to cholesterylated Hh ligand for downstream signaling. A conserved active-site aspartate residue, D46, plays a key catalytic role in Hh autoprocessing by serving as a general base to activate substrate cholesterol. Here we report that a charge-altering Asp-to-His mutant (D46H) expands native cholesterylation activity and retains active-site conformation. Native activity toward cholesterol was established for D46H in vitro using a continuous FRET-based autoprocessing assay and in cellulo with stable expression in human 293T cells. The catalytic efficiency of cholesterylation with D46H is similar to that with wild type (WT), with k max / K M = 2.1 × 10 3 and 3.7 × 10 3 M -1 s -1 , respectively, and an identical p K a = 5.8 is obtained for both residues by NMR. To our knowledge this is the first example where a general base substitution of an Asp for His preserves both the structure and activity as a general base. Surprisingly, D46H exhibits increased catalytic efficiency toward non-native substrates, especially coprostanol (>200-fold) and epicoprostanol (>300-fold). Expanded substrate tolerance is likely due to stabilization by H46 of the negatively charged tetrahedral intermediate using electrostatic interactions, which are less constrained by geometry than H-bond stabilization by D46. In addition to providing fundamental insights into Hh autoprocessing, our findings have important implications for protein engineering and enzyme design.