Copper Hydride Catalyzed Enantioselective Synthesis of Axially Chiral 1,3-Disubstituted Allenes
Author(s) -
Liela Bayeh-Romero,
Stephen L. Buchwald
Publication year - 2019
Publication title -
journal of the american chemical society
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.9b07582
Subject(s) - chemistry , enantioselective synthesis , allene , catalysis , hydride , combinatorial chemistry , copper , organic chemistry , hydrogen
The general enantioselective synthesis of axially chiral disubstituted allenes from prochiral starting materials remains a long-standing challenge in organic synthesis. Here, we report an efficient enantio- and chemoselective copper hydride catalyzed semireduction of conjugated enynes to furnish 1,3-disubstituted allenes using water as the proton source. This protocol is sufficiently mild to accommodate an assortment of functional groups including keto, ester, amino, halo, and hydroxyl groups. Additionally, applications of this method for the selective synthesis of monodeuterated allenes and chiral 2,5-dihydropyrroles are described.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom