
Biomedically Relevant Self-Assembled Metallacycles and Metallacages
Author(s) -
Hajar Sepehrpour,
Wenxin Fu,
Yan Sun,
Peter J. Stang
Publication year - 2019
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.9b06222
Subject(s) - chemistry , metal organic framework , nanotechnology , combinatorial chemistry , cancer research , stereochemistry , crystallography , biophysics , organic chemistry , adsorption , materials science , biology
Diverse metal-organic complexes (MOCs), shaped as rectangles, triangles, hexagons, prisms, and cages, can be formed by coordination between metal ions (Pt, Pd, Ru, Rh, Ir, Zn, Co, and Cd) and organic ligands, with potential applications as alternatives to conventional biomedical materials for therapeutic, sensing, and imaging purposes. MOCs have been investigated as anticancer drugs in the treatment of malignant tumors in lung, cervical, breast, colon, liver, prostate, ovarian, brain, stomach, bone, skin, mouth, thyroid, and other cancers. MOCs with one, two, and three cavities have also been investigated as drug carriers and prepared for the loading and release of different drugs. In addition, MOCs can target proteins by the shape effect and recognize sugars and DNA by electrostatic interactions, as well as estradiol by host-guest interactions, etc. This Perspective mainly covers achievements in the biomedical application of MOCs. We aim to identify some key trends in the reported MOC structures in relation to their biomedical activity and potential applications.