z-logo
open-access-imgOpen Access
Efficient Long-Range, Directional Energy Transfer through DNA-Templated Dye Aggregates
Author(s) -
Xu Zhou,
Sarthak Mandal,
Shuoxing Jiang,
Su Lin,
Jianzhong Yang,
Yan Liu,
David G. Whitten,
Neal W. Woodbury,
Hao Yan
Publication year - 2019
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.9b01548
Subject(s) - chemistry , acceptor , fluorescence , alexa fluor , j aggregate , absorption (acoustics) , cyanine , förster resonance energy transfer , photochemistry , chemical physics , excitation , molecule , optics , materials science , composite material , organic chemistry , engineering , physics , electrical engineering , condensed matter physics
The benzothiazole cyanine dye K21 forms dye aggregates on double-stranded DNA (dsDNA) templates. These aggregates exhibit a red-shifted absorption band, enhanced fluorescence emission, and an increased fluorescence lifetime, all indicating strong excitonic coupling among the dye molecules. K21 aggregate formation on dsDNA is only weakly sequence dependent, providing a flexible approach that is adaptable to many different DNA nanostructures. Donor (D)-bridge (B)-acceptor (A) complexes consisting of Alexa Fluor 350 as the donor, a 30 bp (9.7 nm) DNA templated K21 aggregate as the bridge, and Alexa Fluor 555 as the acceptor show an overall donor to acceptor energy transfer efficiency of ∼60%, with the loss of excitation energy being almost exclusively at the donor-bridge junction (63%). There was almost no excitation energy loss due to transfer through the aggregate bridge, and the transfer efficiency from the aggregate to the acceptor was about 96%. By comparing the energy transfer in templated aggregates at several lengths up to 32 nm, the loss of energy per nanometer through the K21 aggregate bridge was determined to be <1%, suggesting that it should be possible to construct structures that use much longer energy transfer "wires" for light-harvesting applications in photonic systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom