z-logo
open-access-imgOpen Access
Sensitizing Singlet Fission with Perovskite Nanocrystals
Author(s) -
Haipeng Lu,
Xihan Chen,
John E. Anthony,
Justin C. Johnson,
Matthew C. Beard
Publication year - 2019
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.8b13562
Subject(s) - chemistry , nanocrystal , perovskite (structure) , singlet fission , singlet state , fission , nanotechnology , crystallography , triplet state , nuclear physics , molecule , organic chemistry , excited state , physics , neutron , materials science
The marriage of colloidal semiconductor nanocrystals and functional organic molecules has brought unique opportunities in emerging photonic and optoelectronic applications. Traditional semiconductor nanocrystals have been widely demonstrated to initiate efficient triplet energy transfer at the nanocrystal-acene interface. Herein, we report that unlike conventional semiconductor nanocrystals, lead halide perovskite nanocrystals promote an efficient Dexter-like singlet energy transfer to surface-anchored pentacene molecules rather than triplet energy transfer. Subsequently, molecular pentacene triplets are efficiently generated via singlet fission on the nanocrystal surface. Our demonstrated strategy not only unveils the obscure energy dynamics between perovskite nanocrystal and acenes, but also brings important perspectives of utilizing singlet fission throughout the solar spectrum.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom