z-logo
open-access-imgOpen Access
A Fine-Tuned Metal–Organic Framework for Autonomous Indoor Moisture Control
Author(s) -
Rasha G. AbdulHalim,
Prashant M. Bhatt,
Youssef Belmabkhout,
Aleksander Shkurenko,
Karim Adil,
Leonard J. Barbour,
Mohamed Eddaoudi
Publication year - 2017
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.7b04132
Subject(s) - chemistry , moisture , metal , environmental chemistry , chemical engineering , organic chemistry , engineering
Conventional adsorbents, namely zeolites and silica gel, are often used to control humidity by adsorbing water; however, adsorbents capable of the dual functionality of humidification and dehumidification, offering the desired control of the moisture level at room temperature, have yet to be explored. Here we report Y-shp-MOF-5, a hybrid microporous highly connected rare-earth-based metal-organic framework (MOF), with dual functionality for moisture control within the recommended range of relative humidity (45%-65% RH) set by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). Y-shp-MOF-5 exhibits exceptional structural integrity, robustness, and unique humidity-control performance, as confirmed by the large number (thousand) of conducted water vapor adsorption-desorption cycles. The retained structural integrity and the mechanism of water sorption were corroborated using in situ single-crystal X-ray diffraction (SCXRD) studies. The resultant working water uptake of 0.45 g·g -1 is solely regulated by a simple adjustment of the relative humidity, positioning this hydrolytically stable MOF as a prospective adsorbent for humidity control in confined spaces, such as space shuttles, aircraft cabins, and air-conditioned buildings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom