z-logo
open-access-imgOpen Access
Small-Molecule Uncoupling Protein Mimics: Synthetic Anion Receptors as Fatty Acid-Activated Proton Transporters
Author(s) -
Xin Wu,
Philip A. Gale
Publication year - 2016
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.6b10615
Subject(s) - chemistry , transporter , receptor , fatty acid , biochemistry , molecule , proton , stereochemistry , organic chemistry , gene , physics , quantum mechanics
Uncoupling proteins (UCPs) regulate energy expenditure in living cells by inducing proton leakage across the mitochondrial inner membrane, thereby uncoupling adenosine diphosphate phosphorylation from nutrient oxidation. The proton transport activity of UCP1 and UCP2 requires activation by fatty acids. We report here the first examples of synthetic neutral anion receptors performing this biologically important fatty acid-activated function in phospholipid bilayers. We have shown that a tripodal thiourea possesses poor H + /OH - ransport activity without fatty acids, but in the presence of long-chain fatty acids is "switched on" as a proton transporter with an activity close to that of a commonly used protonophore. The fatty acid-enhanced proton transport was also observed for other hydrogen and halogen bond-based synthetic anion transporters. We propose that these compounds induce proton permeability by catalyzing transbilayer movement ("flip-flop") of anionic forms of fatty acids, so allowing the fatty acids to complete a proton transport cycle. Several lines of evidence have been provided to support such a fatty acid cycling mechanism. Our findings open up new applications of anion receptor chemistry and provide important clues for understanding biological activities of synthetic anion transporters and potentially the uncoupling mechanism of naturally occurring membrane proteins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom