Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells
Author(s) -
Zhong’an Li,
Zonglong Zhu,
ChuChen Chueh,
Sae Byeok Jo,
Jingdong Luo,
Sei-Hum Jang,
Alex K.Y. Jen
Publication year - 2016
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.6b06291
Subject(s) - chemistry , chromophore , dopant , perovskite (structure) , rational design , dipole , optoelectronics , nanotechnology , photochemistry , doping , crystallography , organic chemistry , physics , materials science
In this paper, an electron donor-acceptor (D-A) substituted dipolar chromophore (BTPA-TCNE) is developed to serve as an efficient dopant-free hole-transporting material (HTM) for perovskite solar cells (PVSCs). BTPA-TCNE is synthesized via a simple reaction between a triphenylamine-based Michler's base and tetracyanoethylene. This chromophore possesses a zwitterionic resonance structure in the ground state, as evidenced by X-ray crystallography and transient absorption spectroscopies. Moreover, BTPA-TCNE shows an antiparallel molecular packing (i.e., centrosymmetric dimers) in its crystalline state, which cancels out its overall molecular dipole moment to facilitate charge transport. As a result, BTPA-TCNE can be employed as an effective dopant-free HTM to realize an efficient (PCE ≈ 17.0%) PVSC in the conventional n-i-p configuration, outperforming the control device with doped spiro-OMeTAD HTM.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom