z-logo
open-access-imgOpen Access
Identification of Pyridine Synthase Recognition Sequences Allows a Modular Solid-Phase Route to Thiopeptide Variants
Author(s) -
Walter J. Wever,
Jonathan W. Bogart,
Albert A. Bowers
Publication year - 2016
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.6b05389
Subject(s) - chemistry , biosynthesis , peptide , stereochemistry , peptide synthesis , combinatorial chemistry , recognition sequence , template , computational biology , biochemistry , enzyme , restriction enzyme , dna , nanotechnology , biology , materials science
Thiopeptides are structurally complex, bioactive natural products derived from ribosomally synthesized and post-translationally modified peptides. A remarkable set of enzymes were recently revealed to catalyze the formation of the core trithiazolylpyridine of thiopeptides via a formal [4 + 2] cycloaddition. These pyridine synthases typically act late in thiopeptide biosynthesis to affect macrocyclization and cleavage of the N-terminal leader peptide, making them potentially useful biocatalysts for preparation of new thiopeptide variants. Herein we investigate the leader peptide requirements for TclM from thiocillin biosynthesis in Bacillus cereus ATCC 14579. Through a series of truncations, we define a minimum recognition sequence (RS) that is necessary and sufficient for TclM activity. This RS can be readily synthesized and ligated to linear thiopeptide cores prepared via solid-phase peptide synthesis (SPPS), giving an efficient and modular route to thiopeptide variants. We exploit this strategy to define C-terminal core peptide requirements and explore the differences in promiscuity of two pyridine synthases, TclM and TbtD, ultimately examining their ability to access new structural variants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom