z-logo
open-access-imgOpen Access
Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework
Author(s) -
Zhanyong Li,
Neil M. Schweitzer,
Aaron B. League,
Varinia Bernales,
Aaron W. Peters,
Andrew “Bean” Getsoian,
Timothy C. Wang,
Jeffrey T. Miller,
Aleksei Vjunov,
John L. Fulton,
Johannes A. Lercher,
Christopher J. Cramer,
Laura Gagliardi,
Joseph T. Hupp,
Omar K. Farha
Publication year - 2016
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.5b12515
Subject(s) - catalysis , chemistry , sintering , nickel , metal organic framework , heterogeneous catalysis , atomic layer deposition , chemical engineering , combinatorial chemistry , nanotechnology , organic chemistry , layer (electronics) , adsorption , materials science , engineering
Developing supported single-site catalysts is an important goal in heterogeneous catalysis since the well-defined active sites afford opportunities for detailed mechanistic studies, thereby facilitating the design of improved catalysts. We present herein a method for installing Ni ions uniformly and precisely on the node of a Zr-based metal-organic framework (MOF), NU-1000, in high density and large quantity (denoted as Ni-AIM) using atomic layer deposition (ALD) in a MOF (AIM). Ni-AIM is demonstrated to be an efficient gas-phase hydrogenation catalyst upon activation. The structure of the active sites in Ni-AIM is proposed, revealing its single-site nature. More importantly, due to the organic linker used to construct the MOF support, the Ni ions stay isolated throughout the hydrogenation catalysis, in accord with its long-term stability. A quantum chemical characterization of the catalyst and the catalytic process complements the experimental results. With validation of computational modeling protocols, we further targeted ethylene oligomerization catalysis by Ni-AIM guided by theoretical prediction. Given the generality of the AIM methodology, this emerging class of materials should prove ripe for the discovery of new catalysts for the transformation of volatile substrates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom