z-logo
open-access-imgOpen Access
Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes
Author(s) -
Zachary D. Hood,
Hui Wang,
Amaresh Samuthira Pandian,
Jong K. Keum,
Chengdu Liang
Publication year - 2016
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.5b11851
Subject(s) - electrolyte , chemistry , ionic conductivity , fast ion conductor , arrhenius equation , lithium (medication) , activation energy , conductivity , anode , inorganic chemistry , melting point , oxide , metal , chemical engineering , electrode , organic chemistry , engineering , medicine , endocrinology
In a classic example of stability from instability, we show that Li2OHCl solid electrolyte forms a stable solid electrolyte interphase (SEI) layer with a metallic lithium anode. The Li2OHCl solid electrolyte can be readily achieved through simple mixing of LiOH and LiCl precursors at a mild processing temperature <400 °C. Additionally, we show that continuous, dense Li2OHCl membranes can be fabricated at temperatures <400 °C, standing in great contrast to current processing temperatures of >1600 °C for most oxide-based solid electrolytes. The ionic conductivity and Arrhenius activation energy were explored for the LiOH-LiCl system of crystalline solid electrolytes, where Li2OHCl with increased crystal defects was found to have the highest ionic conductivity and reasonable Arrhenius activation energy. The Li2OHCl solid electrolyte displays stability against metallic lithium, even in extreme conditions past the melting point of lithium metal. To understand this excellent stability, we show that SEI formation is critical in stabilizing the interface between metallic lithium and the Li2OHCl solid electrolyte.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom