z-logo
open-access-imgOpen Access
An Electrochromic Tristable Molecular Switch
Author(s) -
Jiazeng Sun,
Yilei Wu,
Yuping Wang,
Zhichang Liu,
Chuyang Cheng,
Karel J. Hartlieb,
Michael R. Wasielewski
Publication year - 2015
Publication title -
journal of the american chemical society
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.5b09274
Subject(s) - chemistry , catenane , electrochromism , cyclophane , tetrathiafulvalene , ring (chemistry) , dication , redox , photochemistry , cyan , molecular switch , crystallography , molecule , organic chemistry , crystal structure , art , electrode , visual arts
A tristable [2]catenane, composed of a macrocyclic polyether incorporating 1,5-dioxynaphthalene (DNP) and tetrathiafulvalene (TTF) units along with a 4,4'-bipyridinium (BIPY(•+)) radical cation as three very different potential recognition sites, interlocked mechanically with the tetracationic cyclophane, cyclobis(paraquat-p-phenylene) (CBPQT(4+)), was synthesized by donor-acceptor templation, employing a "threading-followed-by-cyclization" approach. In this catenane, movement of the CBPQT(4+) ring in its different redox states among these three potential recognition sites, with corresponding color changes, is achieved by tuning external redox potentials. In the starting state, where no external potential is applied, the ring encircles the TTF unit and displays a green color. Upon oxidation of the TTF unit, the CBPQT(4+) ring moves to the DNP unit, producing a red color. Finally, if all the BIPY(2+) units are reduced to BIPY(•+) radical cations, the resulting CBPQT(2(•+)) diradical dication will migrate to the BIPY(•+) unit, resulting in a purple color. These readily switchable electrochromic properties render the [2]catenane attractive for use in electro-optical devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here