z-logo
open-access-imgOpen Access
Quantifying Solvophobic Effects in Nonpolar Cohesive Interactions
Author(s) -
Lixu Yang,
Catherine Adam,
Scott L. Cockroft
Publication year - 2015
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.5b05736
Subject(s) - solvophobic , chemistry , solvent , chemical physics , biomolecule , solvation , molecule , solvent effects , cohesion (chemistry) , surface tension , computational chemistry , organic chemistry , thermodynamics , biochemistry , physics
The hydrophobic effect plays a central role in determining the structure, activity, and properties of biomolecules and materials. In contrast, the general manifestation of this phenomenon in other solvents—the solvophobic effect—although widely invoked, is currently poorly defined because of the lack of a universally accepted descriptor. Here we have used synthetic molecular balances to measure solvent effects on aromatic, aliphatic, and fluorous nonpolar interactions. Our solvent screening data combined with independent experimental measurements of supramolecular association, single-molecule folding, and bulk phase transfer energies were all found to correlate well with the cohesive energy density (ced) of the solvent. Meanwhile, other measures of solvent cohesion, such as surface tension and internal pressure, gave inferior correlations. Thus, we establish ced as a readily accessible, quantitative descriptor of solvophobic association in a range of chemical contexts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom