z-logo
open-access-imgOpen Access
Glycans as Biofunctional Ligands for Gold Nanorods: Stability and Targeting in Protein-Rich Media
Author(s) -
Isabel Garcı́a,
Ana SánchezIglesias,
Malou HenriksenLacey,
Marek Grzelczak,
Soledad Penadés,
Luis M. LizMarzán
Publication year - 2015
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.5b01001
Subject(s) - chemistry , glycan , ethylene glycol , peg ratio , colloidal gold , protein adsorption , nanorod , galectin , receptor , nanoparticle , biophysics , nanotechnology , adsorption , biochemistry , glycoprotein , organic chemistry , materials science , finance , economics , biology
Poly(ethylene glycol) (PEG) has become the gold standard for stabilization of plasmonic nanoparticles (NPs) in biofluids, because it prevents aggregation while minimizing unspecific interactions with proteins. Application of Au NPs in biological environments requires the use of ligands that can target selected receptors, even in the presence of protein-rich media. We demonstrate here the stabilizing effect of low-molecular-weight glycans on both spherical and rod-like plasmonic NPs under physiological conditions, as bench-marked against the well-established PEG ligands. Glycan-coated NPs are resistant to adsorption of proteins from serum-containing media and avoid phagocytosis by macrophage-like cells, but retain selectivity toward carbohydrate-binding proteins in protein-rich biological media. These results open the way toward the design of efficient therapeutic/diagnostic glycan-decorated plasmonic nanotools for specific biological applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here