z-logo
open-access-imgOpen Access
Stable CsPbBr3 Nanoclusters Feature a Disk-like Shape and a Distorted Orthorhombic Structure
Author(s) -
Baowei Zhang,
Davide Altamura,
Rocco Caliandro,
Cinzia Giannini,
Lucheng Peng,
Luca De Trizio,
Liberato Manna
Publication year - 2022
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.1c13544
Subject(s) - nanoclusters , chemistry , orthorhombic crystal system , crystallography , perovskite (structure) , lamellar structure , scattering , crystal structure , optics , physics , organic chemistry
CsPbBr 3 nanoclusters have been synthesized by several groups and mostly employed as single-source precursors for the synthesis of anisotropic perovskite nanostructures or perovskite-based heterostructures. Yet, a detailed characterization of such clusters is still lacking due to their high instability. In this work, we were able to stabilize CsPbBr 3 nanoclusters by carefully selecting ad hoc ligands (benzoic acid together with oleylamine) to passivate their surface. The clusters have a narrow absorption peak at 400 nm, a band-edge emission peaked at 410 nm at room temperature, and their composition is identified as CsPbBr 2.3 . Synchrotron X-ray pair distribution function measurements indicate that the clusters exhibit a disk-like shape with a thickness smaller than 2 nm and a diameter of 13 nm, and their crystal structure is a highly distorted orthorhombic CsPbBr 3 . Based on small- and wide-angle X-ray scattering analyses, the clusters tend to form a two-dimensional (2D) hexagonal packing with a short-range order and a lamellar packing with a long-range order.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom