z-logo
open-access-imgOpen Access
Distance Matters: Biasing Mechanism, Transfer of Asymmetry, and Stereomutation in N-Annulated Perylene Bisimide Supramolecular Polymers
Author(s) -
Marco Martínez,
Azahara DoncelGiménez,
Jesús Cerdá,
Joaquín Calbo,
Rafael Rodríguez,
Juan Aragó,
Jeanne Crassous,
Enrique Ortı́,
Luis Sánchez
Publication year - 2021
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.1c06125
Subject(s) - chemistry , methylcyclohexane , supramolecular chemistry , perylene , supramolecular polymers , oxaziridine , polymer , asymmetry , intermolecular force , polymerization , photochemistry , polymer chemistry , crystallography , stereochemistry , toluene , organic chemistry , molecule , crystal structure , physics , quantum mechanics
The synthesis of two series of N-annulated perylene bisimides (PBIs), compounds 1 and 2 , is reported, and their self-assembling features are thoroughly investigated by a complete set of spectroscopic measurements and theoretical calculations. The study corroborates the enormous influence that the distance between the PBI core and the peripheral groups exerts on the chiroptical properties and the supramolecular polymerization mechanism. Compounds 1 , with the peripheral groups separated from the central PBI core by two methylenes and an ester group, form J-type supramolecular polymers in a cooperative manner but exhibit negligible chiroptical properties. The lack of clear helicity, due to the staircase arrangement of the self-assembling units in the aggregate, justifies these features. In contrast, attaching the peripheral groups directly to the N-annulated PBI core drastically changes the self-assembling properties of compounds 2 , which form H-type aggregates following an isodesmic mechanism. These H-type aggregates show a strong aggregation-caused quenching (ACQ) effect that leads to nonemissive aggregates. Chiral ( S ) -2 and ( R )-2 experience an efficient transfer of asymmetry to afford P - and M-type aggregates, respectively, although no amplification of asymmetry is achieved in majority rules or “sergeants-and-soldiers” experiments. A solvent-controlled stereomutation is observed for chiral ( S )- 2 and ( R )- 2 , which form helical supramolecular polymers of different handedness depending on the solvent (methylcyclohexane or toluene). The stereomutation is accounted for by considering the two possible conformations of the terminal phenyl groups, eclipsed or staggered, which lead to linear or helical self-assemblies, respectively, with different relative stabilities depending on the solvent.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here