z-logo
open-access-imgOpen Access
Electrocatalytic Isoxazoline–Nanocarbon Metal Complexes
Author(s) -
ShaoXiong Len Luo,
Richard Y. Liu,
Sungsik Lee,
Timothy M. Swager
Publication year - 2021
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.1c05439
Subject(s) - graphene , chemistry , x ray photoelectron spectroscopy , carbon nanotube , nanomaterials , catalysis , raman spectroscopy , metal , inorganic chemistry , x ray absorption spectroscopy , covalent bond , absorption spectroscopy , nanotechnology , chemical engineering , materials science , organic chemistry , physics , optics , quantum mechanics , engineering
We report the synthesis of new carbon-nanomaterial-based metal chelates that enable effective electronic coupling to electrocatalytic transition metals. In particular, multiwalled carbon nanotubes (MWCNTs) and few-layered graphene (FLG) were covalently functionalized by a microwave-assisted cycloaddition with nitrile oxides to form metal-binding isoxazoline functional groups with high densities. The covalent attachment was evidenced by Raman spectroscopy, and the chemical identity of the surface functional groups was confirmed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The functional carbon nanomaterials effectively chelate precious metals Ir(III), Pt(II), and Ru(III), as well as earth-abundant metals such as Ni(II), to afford materials with metal contents as high as 3.0 atom %. The molecularly dispersed nature of the catalysts was confirmed by X-ray absorption spectroscopy (XAS) and energy-dispersive X-ray spectroscopy (STEM-EDS) elemental mapping. The interplay between the chelate structure on the graphene surface and its metal binding ability has also been investigated by a combination of experimental and computational studies. The defined ligands on the graphene surfaces enable the formation of structurally precise heterogeneous molecular catalysts. The direct attachment of the isoxazoline functional group on the graphene surfaces provides strong electronic coupling between the chelated metal species and the conductive carbon nanomaterial support. We demonstrate that the metal-chelated carbon nanomaterials are effective heterogeneous catalysts in the oxygen evolution reaction with low overpotentials and tunable catalytic activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom