z-logo
open-access-imgOpen Access
Inclusion of the C-Terminal Domain in the β-Sheet Core of Heparin-Fibrillized Three-Repeat Tau Protein Revealed by Solid-State Nuclear Magnetic Resonance Spectroscopy
Author(s) -
Aurelio J. Dregni,
Harrison K. Wang,
Haifan Wu,
Pu Duan,
Junbo Jia,
William F. DeGrado,
Mei Hong
Publication year - 2021
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.1c03314
Subject(s) - chemistry , fibril , nuclear magnetic resonance spectroscopy , crystallography , biophysics , solid state nuclear magnetic resonance , c terminus , beta sheet , heteronuclear single quantum coherence spectroscopy , tau protein , nuclear magnetic resonance , protein structure , stereochemistry , biochemistry , alzheimer's disease , amino acid , pathology , medicine , physics , disease , biology
Many neurodegenerative diseases such as Alzheimer's disease are characterized by pathological β-sheet filaments of the tau protein, which spread in a prion-like manner in patient brains. To date, high-resolution structures of tau filaments obtained from patient brains show that the β-sheet core only includes portions of the microtubule-binding repeat domains and excludes the C-terminal residues, indicating that the C-terminus is dynamically disordered. Here, we use solid-state NMR spectroscopy to identify the β-sheet core of full-length 0N3R tau fibrillized using heparin. Assignment of 13 C and 15 N chemical shifts of the rigid core of the protein revealed a single predominant β-sheet conformation, which spans not only the R3, R4, R' repeats but also the entire C-terminal domain (CT) of the protein. This massive β-sheet core qualitatively differs from all other tau fibril structures known to date. Using long-range correlation NMR experiments, we found that the R3 and R4 repeats form a β-arch, similar to that seen in some of the brain-derived tau fibrils, but the R1 and R3 domains additionally stack against the CT, reminiscent of previously reported transient interactions of the CT with the microtubule-binding repeats. This expanded β-sheet core structure suggests that the CT may have a protective effect against the formation of pathological tau fibrils by shielding the amyloidogenic R3 and R4 domains, preventing side-on nucleation. Truncation and post-translational modification of the CT in vivo may thus play an important role in the progression of tauopathies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here