z-logo
open-access-imgOpen Access
Diastereo- and Enantioselective Ruthenium-Catalyzed C-C Coupling of 1-Arylpropynes and Alcohols: Alkynes as Chiral Allylmetal Precursors in Carbonyl anti-(α-Aryl)allylation
Author(s) -
Ming Xiang,
Ankan Ghosh,
Michael J. Krische
Publication year - 2021
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.0c12242
Subject(s) - chemistry , ruthenium , enantioselective synthesis , aryl , xantphos , allene , stereocenter , catalysis , aldehyde , alkyne , propargyl , combinatorial chemistry , transfer hydrogenation , organic chemistry , medicinal chemistry , alkyl
Highly tractable 1-aryl-1-propynes, which are readily accessible via Sonogashira coupling, serve as chiral allylmetal pronucleophiles in ruthenium-JOSIPHOS-catalyzed anti -diastereo- and enantioselective aldehyde (α-aryl)allylations with primary aliphatic or benzylic alcohol proelectrophiles. This method enables convergent construction of homoallylic sec -phenethyl alcohols bearing tertiary benzylic stereocenters. Both steric and electronic features of aryl sulfonic acid additives were shown to contribute to the efficiency with which a more selective and productive iodide-bound ruthenium catalyst is formed. As corroborated by isotopic labeling studies, a dual catalytic process is operative in which alkyne-to-allene isomerization is followed by allene-carbonyl reductive coupling via hydrogen auto-transfer. Crossover of ruthenium hydrides emanating from these two discrete catalytic events is observed. The utility of this method is illustrated by conversion of selected reaction products to the corresponding phenethylamines and the first total syntheses of the neolignan natural products (-)-crataegusanoids A-D.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here