z-logo
open-access-imgOpen Access
Thermodynamics and Mechanism of a Photocatalyzed Stereoselective [2 + 2] Cycloaddition on a CdSe Quantum Dot
Author(s) -
Leighton O. Jones,
Martín A. Mosquera,
Yishu Jiang,
Emily A. Weiss,
George C. Schatz,
Mark A. Ratner
Publication year - 2020
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.0c07130
Subject(s) - chemistry , cycloaddition , density functional theory , intermolecular force , molecule , diastereomer , stereoselectivity , quantum dot , excited state , selectivity , photocatalysis , substrate (aquarium) , photochemistry , computational chemistry , chemical physics , nanotechnology , stereochemistry , atomic physics , organic chemistry , catalysis , materials science , physics , oceanography , geology
Colloidal quantum dots (QDs) have shown promise over the last few decades for a range of applications including single photon emission, in vivo imaging, and photocatalysis. Recent experiments demonstrated that QDs impart stereoselectivity to triplet excited-state [2 + 2] cycloaddition reactions of alkenes photocatalyzed by the QD through self-assembly of the reagent molecules on the QD surface, but these experiments did not reveal the precise geometries of surface-bound molecules or their interactions with surface atoms. Here, a theoretical mechanistic approach is used to study such interactions for [2 + 2] cycloadditions of 4-vinylbenzoic acid derivatives on CdSe QDs. Spin-polarized periodic density functional theory (DFT) and nonperiodic DFT calculations are deployed to determine the origin of the selectivity for the syn diastereomer of the resultant tetrasubstituted cyclobutane product via atomistic modeling of the CdSe surface and substrates, determination of the thermodynamic energies of reactions for each step, the intermolecular interactions between the substrates, and the triplet state reaction paths. The calculations indicate that reaction selectivity arises from preferred binding of pairs through intermolecular interactions of substrate molecules on the QD surface in a syn -precursor structure followed by dimerization after triplet excitation. These mechanisms are generalizable to other metal-enriched QD surfaces that have a similar surface structure as that of CdSe, such as InSe or CdTe. Design principles for anti diastereomer derivatives are also discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom