Structure and Function of NzeB, a Versatile C–C and C–N Bond-Forming Diketopiperazine Dimerase
Author(s) -
Vikram V. Shende,
Yogan Khatri,
Sean A. Newmister,
Jacob N. Sanders,
Petra Lindovská,
Fengan Yu,
Tyler J. Doyon,
Justin Kim,
K. N. Houk,
Mohammad Movassaghi,
David H. Sherman
Publication year - 2020
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.0c06312
Subject(s) - chemistry , stereochemistry , function (biology) , biology , evolutionary biology
The dimeric diketopiperazine (DKPs) alkaloids are a diverse family of natural products (NPs) whose unique structural architectures and biological activities have inspired the development of new synthetic methodologies to access these molecules. However, catalyst-controlled methods that enable the selective formation of constitutional and stereoisomeric dimers from a single monomer are lacking. To resolve this long-standing synthetic challenge, we sought to characterize the biosynthetic enzymes that assemble these NPs for application in biocatalytic syntheses. Genome mining enabled identification of the cytochrome P450, NzeB ( Streptomyces sp. NRRL F-5053), which catalyzes both intermolecular carbon-carbon (C-C) and carbon-nitrogen (C-N) bond formation. To identify the molecular basis for the flexible site-selectivity, stereoselectivity, and chemoselectivity of NzeB, we obtained high-resolution crystal structures (1.5 Å) of the protein in complex with native and non-native substrates. This, to our knowledge, represents the first crystal structure of an oxidase catalyzing direct, intermolecular C-H amination. Site-directed mutagenesis was utilized to assess the role individual active-site residues play in guiding selective DKP dimerization. Finally, computational approaches were employed to evaluate plausible mechanisms regarding NzeB function and its ability to catalyze both C-C and C-N bond formation. These results provide a structural and computational rationale for the catalytic versatility of NzeB, as well as new insights into variables that control selectivity of CYP450 diketopiperazine dimerases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom