z-logo
open-access-imgOpen Access
Hydration of a 2D Supramolecular Assembly: Bitartrate on Cu(110)
Author(s) -
Chenfang Lin,
George R. Darling,
Matthew Forster,
Fiona McBride,
Alan G. Massey,
A. Hodgson
Publication year - 2020
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.0c04747
Subject(s) - chemistry , hydrogen bond , carboxylate , adsorption , supramolecular chemistry , metal , molecule , intermolecular force , crystallography , inorganic chemistry , stereochemistry , organic chemistry
Hydration layers play a key role in many technical and biological systems, but our understanding of these structures remains very limited. Here, we investigate the molecular processes driving hydration of a chiral metal-organic surface, bitartrate on Cu(110), which consists of hydrogen-bonded bitartrate rows separated by exposed Cu. Initially water decorates the metal channels, hydrogen bonding to the exposed O ligands that bind bitartrate to Cu, but does not wet the bitartrate rows. At higher temperature, water inserts into the structure, breaks the existing intermolecular hydrogen bonds, and changes the adsorption site and footprint. Calculations show this process is driven by the creation of stable adsorption sites between the carboxylate ligands, to allow hydration of O-Cu ligands within the interior of the structure. This work suggests that hydration of polar metal-adsorbate ligands will be a dominant factor in many systems during surface hydration or self-assembly from solution.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom