Highly Distorted Chiral Two-Dimensional Tin Iodide Perovskites for Spin Polarized Charge Transport
Author(s) -
Haipeng Lu,
Chuanxiao Xiao,
Ruyi Song,
Tianyang Li,
Annalise E. Maughan,
Andrew Levin,
Roman Brunecky,
Joseph J. Berry,
David B. Mitzi,
Volker Blüm,
Matthew C. Beard
Publication year - 2020
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.0c03899
Subject(s) - chemistry , tin , iodide , spin (aerodynamics) , charge (physics) , chemical physics , perovskite (structure) , condensed matter physics , inorganic chemistry , crystallography , organic chemistry , thermodynamics , physics , quantum mechanics
Incorporating chiral organic molecules into organic/inorganic hybrid 2D metal-halide perovskites results in a novel family of chiral hybrid semiconductors with unique spin-dependent properties. The embedded chiral organic moieties induce a chiroptical response from the inorganic metal-halide sublattice. However, the structural interplay between the chiral organic molecules and the inorganic sublattice, as well as their synergic effect on the resulting electronic band structure need to be explored in a broader material scope. Here we present three new layered tin iodide perovskites templated by chiral ( R / S -)methylbenzylammonium ( R/S -MBA), i.e., ( R -/ S -MBA) 2 SnI 4 , and their racemic phase ( rac -MBA) 2 SnI 4 . These MBA 2 SnI 4 compounds exhibit the largest level of octahedral bond distortion compared to any other reported layered tin iodide perovskite. The incorporation of chiral MBA cations leads to circularly polarized absorption from the inorganic Sn-I sublattice, displaying chiroptical activity in the 300-500 nm wavelength range. The bandgap and chiroptical activity are modulated by alloying Sn with Pb, in the series of (MBA) 2 Pb 1- x Sn x I 4 . Finally, we show that vertical charge transport through oriented ( R -/ S -MBA) 2 SnI 4 hin films is highly spin-dependent, arising from a chiral-induced spin selectivity (CISS) effect. We demonstrate a spin-polarization in the current-voltage characteristics as high as 94%. Our work shows the tremendous potential of these chiral hybrid semiconductors for controlling both spin and charge degrees of freedom.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom