z-logo
open-access-imgOpen Access
Observation of a Transient Reaction Intermediate Illuminates the Mechanochemical Cycle of the AAA-ATPase p97
Author(s) -
Simon Rydzek,
Mikhail Shein,
Pavlo Bielytskyi,
Anne K. Schütz
Publication year - 2020
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.0c03180
Subject(s) - chemistry , atpase , aaa proteins , enzyme , adenosine triphosphate , nucleotide , biophysics , biochemistry , gene , biology
The human ATPase p97, also known as valosin containing protein or Cdc48, is a highly abundant AAA+ engine that fuels diverse energy-consuming processes in the human cell. p97 represents a potential target for cancer therapy and its malfunction causes a degenerative disease. Here, we monitor the enzymatic activity of p97 in real time via an NMR-based approach that allows us to follow the steps that couple ATP turnover to mechanical work. Our data identify a transient reaction intermediate, the elusive ADP.P i nucleotide state, which has been postulated for many ATPases but has so far escaped direct detection. In p97, this species is crucial for the regulation of adenosine triphosphate turnover in the first nucleotide-binding domain. We further demonstrate how the enzymatic cycle is detuned by disease-associated gain-of-function mutations. The high-resolution insight obtained into conformational transitions in both protein and nucleotide bridges the gap between static enzyme structures and the dynamics of substrate conversion. Our approach relies on the close integration of solution- and solid-state NMR methods and is generally applicable to shed light on the mechanochemical operating modes of large molecular engines.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom