How Do Local Reactivity Descriptors Shape the Potential Energy Surface Associated with Chemical Reactions? The Valence Bond Delocalization Perspective
Author(s) -
Thijs Stuyver,
Frank De Proft,
Paul Geerlings,
Sason Shaik
Publication year - 2020
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.0c02390
Subject(s) - chemistry , reactivity (psychology) , delocalized electron , density functional theory , fukui function , regioselectivity , valence bond theory , valence (chemistry) , computational chemistry , potential energy surface , chemical physics , molecule , molecular orbital , organic chemistry , medicine , alternative medicine , electrophile , pathology , catalysis
How do local reactivity descriptors, such as the Fukui function and the local spin density distribution, shape the potential energy surface (PES) associated with chemical reactions and thus govern reactivity trends and regioselective preferences? This is the question that is addressed here through a qualitative valence bond (VB) analysis. We demonstrate that common density functional theory (DFT)-based local reactivity descriptors can essentially be regarded-in one way or another-as indirect measures of delocalization, i.e., resonance stabilization, of the reactants within VB theory. The inherent connection between (spatial) delocalization and (energetic) resonance stabilization embedded in VB theory provides a natural and elegant framework for analyzing and comprehending the impact of individual local reactivity descriptors on the global PES. Our analysis provides new insights into the role played by local reactivity descriptors and illustrates under which conditions they can sometimes fail to predict reactivity trends and regioselective preferences, e.g., in the case of ambident reactivity. This treatment constitutes a first step toward a unification of VB theory and conceptual DFT .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom