z-logo
open-access-imgOpen Access
Proton–Electron Transfer to the Active Site Is Essential for the Reaction Mechanism of Soluble Δ9-Desaturase
Author(s) -
Daniel Bím,
Jakub Chalupský,
Martin Culka,
Edward I. Solomon,
Lubomı́r Rulı́šek,
Martin Srnec
Publication year - 2020
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/jacs.0c01786
Subject(s) - chemistry , context (archaeology) , stereochemistry , catalysis , regioselectivity , enzyme , substrate (aquarium) , active site , proton , electron transfer , enzyme catalysis , computational chemistry , photochemistry , organic chemistry , paleontology , oceanography , biology , geology , physics , quantum mechanics
A full understanding of the catalytic action of non-heme iron (NHFe) and non-heme diiron (NHFe 2 ) enzymes is still beyond the grasp of contemporary computational and experimental techniques. Many of these enzymes exhibit fascinating chemo-, regio-, and stereoselectivity, in spite of employing highly reactive intermediates which are necessary for activations of most stable chemical bonds. Herein, we study in detail one intriguing representative of the NHFe 2 family of enzymes: soluble Δ 9 desaturase (Δ 9 D), which desaturates rather than performing the thermodynamically favorable hydroxylation of substrate. Its catalytic mechanism has been explored in great detail by using QM(DFT)/MM and multireference wave function methods. Starting from the spectroscopically observed 1,2-μ-peroxo diferric P intermediate, the proton-electron uptake by P is the favored mechanism for catalytic activation, since it allows a significant reduction of the barrier of the initial (and rate-determining) H-atom abstraction from the stearoyl substrate as compared to the "proton-only activated" pathway. Also, we ruled out that a Q -like intermediate (high-valent diamond-core bis-μ-oxo-[Fe IV ] 2 unit) is involved in the reaction mechanism. Our mechanistic picture is consistent with the experimental data available for Δ 9 D and satisfies fairly stringent conditions required by Nature: the chemo-, stereo-, and regioselectivity of the desaturation of stearic acid. Finally, the mechanisms evaluated are placed into a broader context of NHFe 2 chemistry, provided by an amino acid sequence analysis through the families of the NHFe 2 enzymes. Our study thus represents an important contribution toward understanding the catalytic action of the NHFe 2 enzymes and may inspire further work in NHFe (2) biomimetic chemistry.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here