z-logo
open-access-imgOpen Access
Differential Charge Polarization of Axial Histidines in Bacterial Reaction Centers Balances the Asymmetry of the Special Pair
Author(s) -
A. Alia,
Piotr Wawrzyniak,
Geertje J. Janssen,
Francesco Buda,
Jörg Matysik,
Huub J. M. de Groot
Publication year - 2009
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja9028507
Subject(s) - chemistry , photosynthetic reaction centre , chemical physics , proton , density functional theory , computational chemistry , ground state , hydrogen bond , electron transfer , atomic physics , photochemistry , molecule , organic chemistry , quantum mechanics , physics
In photosynthesis, light energy is transformed into chemical energy that sustains most forms of life on earth. Solid-state NMR spectroscopy in conjunction with density functional theory modeling can resolve electronic structure down to the atomic level in large membrane proteins. In this work, we have used this technique to address the mechanisms underlying the photochemical reactivity of the special pair in the bacterial reaction center. For charge separation, the electrostatics is important, as the Coulomb barrier must be overcome. On the basis of (15)N NMR data, we resolve a subtle charge-balancing mechanism in the ground state by an axial histidine that is connected to the central Mg(2+) on one side and hydrogen-bonded on the other side. Formation of the hydrogen bond between BChl-a-His and H(2)O leads to a difference in electron density relative to the separate BChl-a-His and H(2)O fragments, with excess positive charge on the imidazole ring. This can lower the kinetic barrier for accommodating the different length scales of electron and proton transfer for separation of spin and charge in a bidirectional proton-coupled electron-transfer mechanism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom