z-logo
open-access-imgOpen Access
Defining the Molecular Basis of Amyloid Inhibitors: Human Islet Amyloid Polypeptide–Insulin Interactions
Author(s) -
Anna C. Susa,
Chun Wu,
Summer L. Bernstein,
Nicholas Dupuis,
Hui Wang,
Daniel P. Raleigh,
JoanEmma Shea,
Michael T. Bowers
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja504031d
Subject(s) - chemistry , amylin , islet , amyloid (mycology) , insulin , fibril , biophysics , gene isoform , biochemistry , medicine , gene , inorganic chemistry , biology
Human islet amyloid polypeptide (hIAPP or Amylin) is a 37 residue hormone that is cosecreted with insulin from the pancreatic islets. The aggregation of hIAPP plays a role in the progression of type 2 diabetes and contributes to the failure of islet cell grafts. Despite considerable effort, little is known about the mode of action of IAPP amyloid inhibitors, and this has limited rational drug design. Insulin is one of the most potent inhibitors of hIAPP fibril formation, but its inhibition mechanism is not understood. In this study, the aggregation of mixtures of hIAPP with insulin, as well as with the separate A and B chains of insulin, were characterized using ion mobility spectrometry-based mass spectrometry and atomic force microscopy. Insulin and the insulin B chain target the hIAPP monomer in its compact isoform and shift the equilibrium away from its extended isoform, an aggregation-prone conformation, and thus inhibit hIAPP from forming β-sheets and subsequently amyloid fibrils. All-atom molecular modeling supports these conclusions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom