Identification of Biologically Active, HIV TAR RNA-Binding Small Molecules Using Small Molecule Microarrays
Author(s) -
Joanna Sztuba-Solińska,
Shilpa R. Shenoy,
Peter C. Gareiss,
Lauren R. H. Krumpe,
Stuart F.J. Le Grice,
Barry R. O’Keefe,
John S. Schneekloth
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja502754f
Subject(s) - chemistry , tar (computing) , small molecule , identification (biology) , molecule , human immunodeficiency virus (hiv) , dna microarray , computational biology , rna , combinatorial chemistry , biochemistry , virology , organic chemistry , gene expression , gene , computer science , biology , programming language , botany
Identifying small molecules that selectively bind to structured RNA motifs remains an important challenge in developing potent and specific therapeutics. Most strategies to find RNA-binding molecules have identified highly charged compounds or aminoglycosides that commonly have modest selectivity. Here we demonstrate a strategy to screen a large unbiased library of druglike small molecules in a microarray format against an RNA target. This approach has enabled the identification of a novel chemotype that selectively targets the HIV transactivation response (TAR) RNA hairpin in a manner not dependent on cationic charge. Thienopyridine 4 binds to and stabilizes the TAR hairpin with a Kd of 2.4 μM. Structure-activity relationships demonstrate that this compound achieves activity through hydrophobic and aromatic substituents on a heterocyclic core, rather than cationic groups typically required. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis was performed on a 365-nucleotide sequence derived from the 5' untranslated region (UTR) of the HIV-1 genome to determine global structural changes in the presence of the molecule. Importantly, the interaction of compound 4 can be mapped to the TAR hairpin without broadly disrupting any other structured elements of the 5' UTR. Cell-based anti-HIV assays indicated that 4 inhibits HIV-induced cytopathicity in T lymphocytes with an EC50 of 28 μM, while cytotoxicity was not observed at concentrations approaching 1 mM.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom