z-logo
open-access-imgOpen Access
Protic Ionic Liquids and Salts as Versatile Carbon Precursors
Author(s) -
Shiguo Zhang,
Muhammed Shah Miran,
Ai Ikoma,
Kaoru Dokko,
Masayoshi Watanabe
Publication year - 2014
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja411981c
Subject(s) - chemistry , carbonization , ionic liquid , carbon fibers , graphite , yield (engineering) , nitrogen , polymer , oxygen , molecule , ionic bonding , conductivity , inorganic chemistry , chemical engineering , organic chemistry , catalysis , adsorption , ion , composite number , materials science , engineering , metallurgy , composite material
Instead of traditional polymer precursors and complex procedures, easily prepared and widely obtainable nitrogen-containing protic ionic liquids and salts were explored as novel, small-molecule precursors to prepare carbon materials (CMs) via direct carbonization without other treatments. Depending on the precursor structure, the resultant CMs can be readily obtained with a relative yield of up to 95.3%, a high specific surface area of up to 1380 m(2)/g, or a high N content of up to 11.1 wt%, as well as a high degree of graphitization and high conductivity (even higher than that of graphite). One of the carbons, which possesses a high surface area and a high content of pyridinic N, exhibits excellent electrocatalytic activity toward the oxygen reduction reaction in an alkaline medium, as revealed by an onset potential, half-wave potential, and kinetic current density comparable to those of commercial 20 wt% Pt/C. These low-cost and versatile precursors are expected to be important building blocks for CMs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom