Electrogenerated Chemiluminescence for Potentiometric Sensors
Author(s) -
Gastón A. Crespo,
Günter Mistlberger,
Eric Bakker
Publication year - 2011
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja210600k
Subject(s) - chemistry , chemiluminescence , potentiometric titration , electrode , ruthenium , inorganic chemistry , working electrode , electroanalytical method , reference electrode , potentiometric sensor , potassium , electrode potential , electrochemiluminescence , analytical chemistry (journal) , electrochemistry , chromatography , organic chemistry , catalysis
We report here on a generic approach to read out potentiometric sensors with electrogenerated chemiluminescence (ECL). In a first example, a potassium ion-selective electrode acts as the reference electrode and is placed in contact with the sample solution. The working electrode of the three-electrode cell is responsible for ECL generation and placed in a detection solution containing tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] and the coreactant 2-(dibutylamino)ethanol (DBAE), physically separated from the sample by a bridge. Changes in the sample potassium concentration directly modulate the potential at the working electrode, and hence the ECL output, when a constant-potential pulse is applied between the two electrodes. A linear response of the ECL intensity to the logarithmic potassium concentration between 10 μm and 10 mM was found.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom