z-logo
open-access-imgOpen Access
Selective Interface Detection: Mapping Binding Site Contacts in Membrane Proteins by NMR Spectroscopy
Author(s) -
Suzanne Kiihne,
Alain F. L. Creemers,
Willem J. de Grip,
Petra H. M. BovéeGeurts,
Johan Lugtenburg,
Huub J. M. de Groot
Publication year - 2005
Publication title -
journal of the american chemical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.115
H-Index - 612
eISSN - 1520-5126
pISSN - 0002-7863
DOI - 10.1021/ja045677r
Subject(s) - chemistry , crystallography , ligand (biochemistry) , magic angle spinning , nuclear magnetic resonance spectroscopy , rhodopsin , spectroscopy , membrane , solid state nuclear magnetic resonance , binding site , stereochemistry , retinal , nuclear magnetic resonance , receptor , biochemistry , physics , quantum mechanics
Intermolecular contact surfaces are important regions where specific interactions mediate biological function. We introduce a new magic angle spinning solid state NMR technique, dubbed "selective interface detection spectroscopy" (SIDY). In this technique, 13C-attached protons (1Hlig) are dephased by 1H-13C REDOR. A spin diffusion period is then used to enhance long distance 1H-1H correlations, and the results are detected by a short period of cross polarization to the 13C isotope labels. This SIDY approach allows selective observation of the interface between 13C-labeled and unlabeled moieties. We have used SIDY to probe the ligand-protein binding surface between a uniformly isotopically labeled ligand cofactor, U-13C20-11-cis-retinal, and its binding site in rhodopsin (Rho), an unlabeled, membrane-embedded G-protein coupled receptor (GPCR). The observed 1HGPCR-13Clig correlations indicate multiple close contacts between the protein and the ionone ring of the ligand, in agreement with binding studies. The polyene tail of the ligand displays fewer strong correlations in the SIDY spectrum. Some correlations can be assigned to the protein side chains lining the ligand binding site, in agreement with the crystal structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom