Crystalline and Liquid Structure of Zinc Chloride Trihydrate: A Unique Ionic Liquid
Author(s) -
Robert J. Wilcox,
Bradley P. Losey,
J.C.W. Folmer,
James D. Martin,
Matthias Zeller,
Roger D. Sommer
Publication year - 2015
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/ic5024532
Subject(s) - chemistry , hydrogen bond , crystallography , intermolecular force , raman spectroscopy , ionic liquid , ionic bonding , neutron diffraction , zinc , hydrate , phase (matter) , inorganic chemistry , reverse monte carlo , crystal structure , ion , molecule , organic chemistry , physics , optics , catalysis
The water/ZnCl(2) phase diagram in the vicinity of the 75 mol % water composition is reported, demonstrating the existence of a congruently melting phase. Single crystals of this 3-equiv hydrate were grown, and the crystal structure of [Zn(OH(2))(6)][ZnCl(4)] was determined. Synchrotron X-ray and neutron diffraction and IR and Raman spectroscopy along with reverse Monte Carlo modeling demonstrate that a CsCl-type packing of the molecular ions persists into the liquid state. Consistent with the crystalline and liquid structural data, IR spectroscopy demonstrates that the O-H bonds of coordinated water do not exhibit strong intermolecular hydrogen ion bonding but are significantly weakened because of the water's coordination to Lewis acidic zinc ions. The O-H bond weakening makes this system a very strong hydrogen-bond donor, whereas the ionic packing along with the nonpolar geometry of the molecular ions makes this system a novel nonpolar, hydrogen-bonding, ionic liquid solvent.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom