Density Functional Theory Study of Oxygen-Atom Insertion into Metal–Methyl Bonds of Iron(II), Ruthenium(II), and Osmium(II) Complexes: Study of Metal-Mediated C–O Bond Formation
Author(s) -
Daniel B. Pardue,
Jiajun Mei,
Thomas R. Cundari,
T. Brent Gunnoe
Publication year - 2014
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/ic402759w
Subject(s) - chemistry , osmium , ruthenium , metal , ligand (biochemistry) , density functional theory , catalysis , pyridine , medicinal chemistry , oxygen , photochemistry , inorganic chemistry , computational chemistry , organic chemistry , biochemistry , receptor
Metal-mediated C-O bond formation is a key step in hydrocarbon oxygenation catalytic cycles; however, few examples of this reaction have been reported for low-oxidation-state complexes. Oxygen insertion into a metal-carbon bond of Cp*M(CO)(OPy)R (Cp* = η(5)-pentamethylcyclopentadienyl; R = Me, Ph; OPy = pyridine-N-oxide; M = Fe, Ru, Os) was analyzed via density functional theory calculations. Oxygen-atom insertions through a concerted single-step organometallic Baeyer-Villiger pathway and a two-step pathway via a metal-oxo intermediate were studied; calculations predict that the former pathway was lower in energy. The results indicated that functionalization of M-R to M-OR (R = Me, Ph) is plausible using iron(II) complexes. Starting from Cp*Fe(CO)(OPy)Ph, the intermediate Fe-oxo showed oxyl character and, thus, is best considered an Fe(III)O(•-) complex. Oxidation of the π-acid ancillary ligand CO was facile. Substitutions of CO with dimethylamide and NH3 were calculated to lower the activation barrier by ∼1-2 kcal/mol for formation of the Fe(III)O(•-) intermediate, whereas a chloride ligand raised the activation barrier to 26 kcal/mol from 22.9 kcal/mol.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom